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Abstract An analysis of the mapping properties of three commonly used domain integro–differential operators
for electromagnetic scattering by an inhomogeneous dielectric object embedded in a homogeneous background is
presented in the Laplace domain. The corresponding three integro–differential equations are shown to be equivalent
and well-posed under finite-energy conditions. The analysis allows for non-smooth changes, including edges and
corners, in the dielectric properties. The results are obtained via the Riesz–Fredholm theory, in combination with
the Helmholtz decomposition and the Sobolev embedding theorem.
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1 Introduction

The study of electromagnetic scattering by strongly inhomogeneous objects has many biological and geophysical
applications ranging from hyperthermia cancer therapy, to determination of specific absorption rates (SAR) in the
human head for product designs such as in GSM or UMTS applications, to exploration of the soil with respect to
ores, to the detection of anti-personnel mines. In inverse scattering, one seeks to determine the material composition
of an object in terms of its electromagnetic properties.

The electromagnetic scattering phenomena are usually studied in a numerical context, based either on partial
differential equations or on domain integro–differential equations. One of the main advantages of the latter is that, in
principle, they can be restricted to the domain of the scattering object itself, and the radiation conditions at infinity are
automatically satisfied, as opposed to finite-element and finite-difference techniques, which originate from partial
differential equations. On the other hand, without special measures, the computational complexity of discretized
versions of integro–differential equations is much higher compared to finite-element and finite-difference methods
for corresponding partial differential equations; the former gives rise to dense matrices, while the latter give highly
sparse matrices. In terms of the number of unknowns, the discretized integro–differential equations are usually more
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economical; in finite-element and finite-difference contexts, extra space is required to deal with artificial boundary
conditions to take into account approximated radiation conditions.

For integro–differential equations, several methods have been proposed to overcome the complexity problem,
such as the CGFFT [1–3], which is based on FFTs on a structured grid, and the multilevel fast multipole algorithm
(MLFMA) [4]. All aim at the construction of an efficient matrix–vector product and employ iterative techniques to
solve the set of linear equations. Nevertheless, since the scattering object is inhomogeneous, a full three-dimensional
mesh is needed to arrive at a discretization of the pertaining integro–differential equation, which leads to a large num-
ber of unknowns and large sets of linear equations. Under certain conditions, the convergence of the aforementioned
iterative techniques tends to stall, e.g., for large differences in the permittivity between the object and its surrounding
background material, or for negative contrasts, i.e., the case where the permittivity of the background is higher than
the one of the object itself. Such observations raise the question as to whether the integro–differential equations
are properly discretized and what else might be the cause of the stalling of the convergence. Can this convergence
problem be overcome by preconditioning techniques and how should this preconditioner be constructed?

As a first step towards answering these questions, we present an analysis of the mapping properties of three
commonly used integro–differential equations for scattering by an inhomogeneous dielectric object embedded in
a homogeneous space, in the Laplace domain. The next step is then to adapt existing discretization procedures to
arrive at a numerical scheme that accounts for these mapping properties or identify parts of the integro–differential
operator that require special treatment in the form of preconditioning.

The domain integro–differential equation for the electric field for a dielectric object in a homogeneous background
was analyzed by Müller [5], under the assumption that the permittivity functions are continuously differentiable
with respect to the spatial variables. Although this model is often encountered in real life, it is not so frequently
encountered in numerical models. For permittivity functions with discontinuities, sharp edges, or corners, the anal-
ysis of Müller [5] breaks down. Recently, the same domain integro–differential equation was analyzed by means
of the Banach contraction principle in [6–9] under finite-energy conditions. In this analysis, no assumptions are
made on the smoothness of the permittivity functions, and specific details regarding the background medium are not
required, although both the object and the background need to be lossy. In the analysis presented here, the dielectric
object can have spatial discontinuities in its dielectric material and the boundaries on which the discontinuities
occur are allowed to have sharp edges and corners. Further, we allow for lossy and lossless dielectric properties
for both the object and the homogeneous space in which it is embedded, and the time-dependence can be purely
harmonic. Our mathematical analysis is based on the Riesz–Fredholm theory, in combination with the Helmholtz
decomposition and the Sobolev embedding theorem. To deal with corners and edges, we restrict the analysis to the
case where the electromagnetic field carries a locally finite energy.

2 Formulation of the domain integro–differential equations

A dielectric object occupying the bounded domain D in 3-D Euclidean space, with boundary ∂D, is described by
a permittivity function ε(r, τ ), where r is the (Cartesian) position vector, and τ is the time lag between the force
action and the reaction of the medium to model dispersion. The permittivity function is, in general, a 3 × 3 tensor.
The configuration is depicted in Fig. 1. Outside D = D ∪ ∂D, the permittivity function equals the permittivity ε0

of free space, although the extension to another homogeneous background is straightforward. We assume that the
permeability equals µ0 everywhere. We apply a Laplace transform with respect to time to Maxwell’s equations,
according to

F(s) =
∫ ∞

0
F(t) exp(−st)dt, Re{s} ≥ 0. (1)

In most cases, we let the real part of the Laplace parameter s become zero, which should be understood as

s = lim
δ↓0

δ + jω, (j = √−1), (2)
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Fig. 1 A dielectric object
with incident field D

D

assuming that F(t) is integrable with respect to t , and ω ≥ 0 is the radial frequency. Maxwell’s equations can now
be written as

∇ × H(r, s) = sε(r, s)E(r, s) + J0(r, s), ∇ × E(r, s) = −sµ0 H(r, s) − K 0(r, s), (3a, b)

where E and H denote the electric and magnetic fields, and J0 and K 0 denote the primary electric and magnetic
sources. Further, we have assumed that the permittivity function also takes into account possible Ohmic losses.
Subsequently, we write the electric and magnetic field as the sum of the incident field and the scattered field,
indicated with a superscript i and s, respectively, i.e.,

E = Ei + Es, H = H i + Hs. (4a, b)

The incident fields satisfy Maxwell’s equations in the absence of the dielectric object and in the presence of the
primary sources. Consequently, the scattered fields satisfy

∇ × Hs = sε0 Es + sε0χ E = sε0 Es + Jc, ∇ × Es = −sµ0 Hs . (5a, b)

We have introduced χ(r, s), which is a 3×3 tensor with χk,�(r, s) = (εk,�(r, s)−ε0δk,�)/ε0. Further, we have defined
the contrast-current density Jc = sε0χ E, which has support D. In the absence of a primary polarization field,
another useful definition of the contrast-current density can be obtained from the relation D(r, s) = ε(r, s)E(r, s),
where D is the generalized electric-flux density. This relation yields

Jc = sε0χε−1 D, (6)

under the assumption that the permittivity tensor is point-wise invertible.
The scattered electric and magnetic field can now be expressed in terms of a vector potential A of Hs as

[10, Chap. 26]

Es = 1

sε0

(
∇∇ · A − s2ε0µ0 A

)
, Hs = ∇ × A. (7a, b)

For continuously differentiable Jc with compact support D in R
3, the vector potential is given by

A(r) =
∫∫

D

∫
G(r − r ′)Jc(r ′)dV ′, (8)

where the Lorenz gauge has been applied, the vector fields are described in Cartesian components,

G(r) = exp(−s|r|/c0)

4π |r| (9)

is the Green’s function of the Helmholtz equation in free space, and c0 is the velocity of light in free space.
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To arrive at a domain integro–differential equation for the contrast-current density, we employ Eq. (4a) resulting
in the expression

sε0 Ei = sε0
(
E − Es) = sε0 E + s2

c2
0

A − ∇∇ · A, (10)

which, together with Eq. (8), is a domain integro–differential equation for E if we use the definition in Eq. (5a)
for Jc. Alternatively, we can obtain a domain integro–differential equation for D, by using the constitutive relation
between E and D, which leads to

sε0 Ei = sε0ε
−1 D + s2

c2
0

A − ∇∇ · A. (11)

By using relation (6), we see that A is a function of D. Finally, we obtain a domain integro–differential equation
for Jc by multiplying Eq. (10) by the contrast function χ and using the definition of Jc, which results in

sε0χ Ei = Jc + χ

[
s2

c2
0

A − ∇∇ · A

]
, (12)

where A is a function of Jc as shown in Eq. (8).
For future notational convenience, we introduce the following operators. The identity operator is denoted by I;

Mχ and Mε−1 are multiplication operators that multiply the matrix functions χ(r, s) and ε(r, s)−1, and the operator
N is defined in terms of the vector potential as

N Jc = s2

c2
0

A(r) − ∇∇ · A(r), (13)

where the vector potential is a function of the contrast current density Jc as defined in Eq. (8). The three integro–
differential equations of Eqs. (10), (11), and (12) are now denoted as
(
I + NMχ

)
E = Ei ,

(
I + NMχ

)
Mε−1 D = Ei ,

1

sε0
(I + MχN) Jc = Mχ Ei . (14a, b, c)

3 Equivalence of the integro–differential equations

The first issue to be resolved is the equivalence between the three integro–differential equations with respect to
existence and uniqueness of the solution, i.e., if one of the equations admits a unique solution, then the other two
also admit a unique solution. Below, we will explain why this is the case, under the assumption that the incident
electric field is known everywhere.

3.1 Existence

First, let us consider the equivalence between Eqs. (14a) and (14c) for the total electric field and the contrast current
density, respectively. Suppose that the total electric field E(r) has been solved in a volume containing D in its
interior. Straightforward multiplication with the contrast function χ(r) immediately gives an expression for Jc(r).
Since E(r) satisfies Eq. (14a), it is readily seen that the expression for Jc(r) satisfies Eq. (14c). Hence, Jc(r)
can be directly obtained from the total electric field. The opposite situation is more complex because χ(r) is not
necessarily invertible on D and certainly not invertible outside D. To resolve this situation, we employ the scattered
field representation given by Eq. (7a) in combination with Eq. (8). Since we have assumed that the incident electric
field is known everywhere, we can reconstruct the total electric field E(r) from the sum of the incident field and
the scattered field, which is expressed in terms of the contrast current density; in this way, the total electric field
automatically satisfies Eq. (14a) by construction. Hence, we conclude that the domain integro–differential equations
for the contrast current density and for the total electric field are equivalent.
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To settle the equivalence between Eqs. (14a) and (14c) for the total electric field and the contrast current density
on the one hand and Eq. (14b) for generalized electric flux density D(r) on the other, we note that we can obtain
D(r) from the total electric field by multiplication with the permittivity function ε(r). In view of the equivalence
between the contrast current density and the total electric field, as shown above, this step is sufficient to obtain D(r)
from the contrast current density or from the total electric field. The reverse situation is settled by Eq. (6) and the
equivalence between the total electric field and the contrast current density. Note that only the latter step requires
the invertibility of the permittivity function at every point in space. This is not alarming, since the introduction of
the generalized electric flux density already relies on this assumption and Eq. (14b) explicitly contains the inverse
of the permittivity function. In this sense, the integro–differential equation for the generalized electric flux density
is only conditionally equivalent to the other two integro–differential equations.

3.2 Uniqueness

To arrive at a uniqueness result for the integro–differential equations, we employ a uniqueness result for Maxwell’s
equations, i.e., we start from the uniqueness for the set of differential equations. The uniqueness result for Maxwell’s
equations, subject to the radiation conditions, for a dielectric object of finite size, i.e., the domain of the object is
bounded in R

3, with a finite number of sharp corners and edges in a homogeneous background was proven by Jones
[11, Chap. 9]. To deal with corners and edges, Jones explicitly augmented the standard (Silver–Müller) radiation
conditions with the conditions that the electric and magnetic fields are locally square-integrable. In the proof, the
continuity of the tangential electric and magnetic fields at the interface between the homogeneous background and
the dielectric object is used. Therefore, according to [11], we know that the following system has only the trivial
solution:⎧⎨
⎩

∇ × Hs(r, s) = sε(r, s)Es(r, s),
∇ × Es(r, s) = −sµ0 Hs(r, s),
radiationconditions ∧ E, H ∈ L2

loc(R
3)3,

(15)

where ε equals ε0 outside a bounded domain, and L2
loc(R

3)3 is the space of three-dimensional vector functions
which are locally square integrable. Let both Jc

1 and Jc
2 be solutions of Eq. (14c) with the same excitation.

Then Jc
3 = Jc

1 − Jc
2 is a solution of the homogeneous counterpart of Eq. (14c). The corresponding scattered

fields Es
3 and Hs

3 generated by this current density, and subject to the radiation conditions follow from Eqs. (7a),
(7b), and (8). By definition of the current densities Jc

1 = sε0χ(Ei + Es
1) and Jc

2 = sε0χ(Ei + Es
2) we have

Jc
3 = sε0χ(Es

1 − Es
2) = sε0χ Es

3. Consequently, the fields Es
3 and Hs

3 satisfy Eq. (15). We can conclude that
Es

3 = 0. Hence, Jc
3 = 0 and the integro–differential equation (14c) has a unique solution, provided that the solution

is restricted to L2
loc(R

3)3. The uniqueness for the other two domain integro–differential equations, i.e. Eqs. (14a)
and (14b), can be established by virtually the same arguments.

4 Decomposition and Fredholm properties of the operator

In Sect. 3.1, we have shown that the three domain integro–differential equations are equivalent with respect to
existence, i.e., if one equation admits a solution, then all equations do so. The existence of a solution itself has not
yet been addressed. In the following, we demonstrate the existence of the solution and we show that it depends in
a continuous way on the incident field. This, together with the uniqueness result of Sect. 3.2 and the equivalence,
shows that all three integro–differential equations are well-posed, i.e., the operators have an inverse that is bounded.

In view of the equivalence between the three integro–differential operators, we can analyze any one of the three
integro–differential operators. We choose to analyze the integro–differential equation for the contrast current den-
sity, i.e., Eq. (14c). The main motivation is that it is immediately clear that the domain of validity of the equation can
be restricted to the support of the dielectric object, whereas for the other two equations, restriction of the domain is

123



294 M. C. van Beurden, S. J. L. van Eijndhoven

not straightforward. Further, the contrast current density does not require a priori smoothness conditions, such as
tangential continuity for the electric field.

To analyse the mapping properties of the integro–differential operator I + MχN for Jc defined in Eq. (14c), we
invoke the Riesz theory for Fredholm operators of the second kind. The relevant part of the Riesz theory can be
summarized as [12,13]:

Theorem 1 Let H1 and H2 be Hilbert spaces, let C be a compact operator from H1 to H2 and let T be a bounded
linear operator from H1 to H2 with T−1 bounded from H2 to H1. If T + C : H1 → H2 is one-to-one, then the
inverse operator (T + C)−1 : H2 → H1 exists and is bounded.

In terms of the operator I + MχN, the above theorem considers three items. First, we have to establish proper
Hilbert spaces for the domain and range of the operator, i.e., we should identify H1 and H2. From the definition
of the identity operator I, we have H1 ⊂ H2. Further, in view of the conditions mentioned in Sect. 3.2 and the
absence of smoothness conditions for ε(r, s), it is natural to identify both H1 and H2 with the Lebesgue space of
square-integrable functions. Second, we have to show that the operator I + MχN is one-to-one. This effectively
means that we have to show that the solution is unique, which was already shown in Sect. 3.2. Finally, we have to
split the operator I + MχN such that I + MχN = T + C, where C is compact from H1 to H2 and T has a bounded
inverse on these Hilbert spaces. We will arrive at a suitable splitting of the operator by means of the Helmholtz
decomposition.

4.1 Conditions on the permittivity function

First, we need to establish some properties of the permittivity function. Since we will use a Hilbert-space setting,
it is natural to have conditions on the permittivity function in terms of functionals that have a meaning within such
Hilbert spaces. Let us denote by L2(G)3 the space of three-dimensional Cartesian vector fields that are square-inte-
grable on G. For a bounded domain G that contains the dielectric object, we formulate the following conditions for
the permittivity functions for fixed s and all f ∈ L2(G)3,

α

∫∫
G

∫
f · f ∗dV ≤

∣∣∣∣
∫∫

G

∫
f ∗ · (ε f ) dV

∣∣∣∣ ≤ β

∫∫
G

∫
f · f ∗dV, (16)

for some 0 < α, β < ∞. The former part of the inequality is known as coerciveness [13], whereas the latter part of
the inequality is known as boundedness.

As a result of the above conditions, ε(r, s) is invertible almost everywhere in space for a fixed value of s. Further,
the modulus of every element of ε(r, s) is bounded from above, i.e., supk,�,r∈G

∣∣εk,�(r, s)
∣∣ = εmax. After splitting

ε(r, s) in a real and imaginary part, i.e.,

ε(r, s) = ε(r, s)′ − jε(r, s)′′, (17)

similar hypotheses on ε(r, s) exist, which can be derived from causality and finite-energy principles. These
hypotheses are

0 ≤ ξ∗ · [ε(r, s)′ξ ] ≤ a′ξ∗ · ξ , (18a)

0 ≤ ξ∗ · [ε(r, s)′′ξ ] ≤ a′′ξ∗ · ξ , (18b)

for ξ ∈ C
3 and where ∗ denotes complex conjugation. The coefficients a′ and a′′ are independent of r and s. These

hypotheses hold almost everywhere in G, i.e., except for a set of volume zero, and indicate that both ε′ and ε′′
are positive semi-definite (almost everywhere). Furthermore, the conditions in (16) indicate that if the real part is
indefinite in some region of G, the imaginary part will be definite in that region, and vice versa, for a fixed s (almost
everywhere). A discussion of these hypotheses can be found in [14, Chap. 1].
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Fig. 2 Extension of the
domain D to K

D

K

K

4.2 Helmholtz decomposition

To analyze the domain integro–differential equation, we extend the domain D to the cube K, with boundary ∂K,
such that D is contained in K and the distance d between D and ∂K is positive. This is shown in Fig. 2. We choose a
Cartesian coordinate system such that its origin coincides with the center of the cube, the axes are oriented parallel
to the edges of the cube and these edges have length 2a. Further, we extend the definition of the contrast-current
density Jc to K by extending Jc by zero outside D.

Let f be a continuously differentiable vector field on K, i.e., f ∈ C1(K)3 ∩ C(K)3. Then the Helmholtz
decomposition allows a decomposition of f as [15]

f = ∇ p + ∇ × w, (19)

where p ∈ C2(K) and w ∈ C1(K)3 ∩ C(K)3. We can supplement the Helmholtz decomposition by a boundary
condition for w

n × w|∂K = 0, (20)

where n is the outward-pointing unit normal vector at ∂K. Using the identity

∇ · (g × h) = h · ∇ × g − g · ∇ × h, (21)

where · indicates the (non-complex) scalar product between two vectors, we have∫∫
K

∫
∇ · (w∗ × ∇ p)dV =

∫∫
K

∫
∇ p · ∇ × w∗dV, (22)

where ∗ indicates complex conjugation. From Gauss’s theorem and Eq. (20), we obtain the orthogonality relation∫∫
K

∫
∇ p · ∇ × w∗dV =

∫
∂K

∫
∇ p · (n × w∗) dA = 0. (23)

Further, it can be proven [16, pp. 245–248 and 314] that the scalar field

s(r) =
∫∫

K

∫
G(r − r ′)p(r ′)dV ′, (24)

satisfies the inhomogeneous Helmholtz equation

∇2s(r) − s2

c2
0

s(r) = −p(r), r ∈ K, (25)
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where

G(r) = exp (−s|r|/c0)

4π |r| . (26)

For a continuously differentiable scalar function q(r), we can show by straightforward integration by parts and by
using the translation invariance of G(r − r ′) that∫∫

K

∫
G(r − r ′)∂i ′q(r ′)dV ′ = ∂i

∫∫
K

∫
G(r − r ′)q(r ′)dV ′ +

∫
∂K|i=a

∫
G(r − r ′)q(r ′)dA′ −

∫
∂K|i=−a

∫
G(r − r ′)q(r ′)dA′,

(27)

where i ∈ {x, y, z}, i ′ ∈ {x ′, y′, z′}, ∂K|i=a is the surface of the cube described by i = a and ∂K|i=−a is the
surface of the cube described by i = −a, e.g., ∂K|x=a is given by x = a, −a < y < a, −a < z < a. This identity,
applied to the separate components in the Helmholtz decomposition, together with Eq. (20), yields

∫∫
K

∫
G(r − r ′)∇′ × w(r ′)dV ′ = ∇ ×

∫∫
K

∫
G(r − r ′)w(r ′)dV ′, (28a)

∫∫
K

∫
G(r − r ′)∇′ p(r ′)dV ′ = ∇

∫∫
K

∫
G(r − r ′)p(r ′)dV ′ +

∫
∂K

∫
G(r − r ′)p(r ′)n(r ′)dA′. (28b)

The term containing the volume integral over p is identical to ∇s(r) in Eq. (24). From Eqs. (7a) and (8), we observe
that the scattered electric field is of the form

sε0 Es(r) =
(

∇∇ · − s2

c2
0

)∫∫
K

∫
G(r − r ′) f (r ′)dV ′, (29)

where f (r) represents the contrast-current density Jc(r), after extension to K. If we apply the results of Eqs. (19),
(24), (25), and (28) to the representation of the scattered electric field, we obtain(

∇∇ · − s2

c2
0

) ∫∫
K

∫
G(r − r ′) f (r ′)dV ′ =

(
∇∇ · − s2

c2
0

) ∫
∂K

∫
G(r − r ′)p(r ′)n(r ′)dA′

−∇ p − s2

c2
0

∫∫
K

∫
G(r − r ′)∇ × w(r ′)dV ′, (30)

for r ∈ K.

4.3 Mapping properties under finite-energy conditions

In view of the radiation conditions discussed in Sect. 3.2, we expect Jc to belong to the space L2(K)3, provided
Mχ Ei also belongs to L2(K)3. Therefore, it is useful to investigate the mapping properties of the integro–differential
operator I+MχN as defined in Eq. (14c) as a mapping from L2(K)3 to L2(K)3. Because continuously differentiable
functions are dense in L2(K), the Helmholtz decomposition can be extended to vector fields in L2(K)3 in the sense
of Eq. (19) and the boundary condition (20) [15, Corollary 6, p. 226]. Hence we can define the mutually orthogonal
projection operators P and Q as

P f = ∇ p, Q f = (I − P) f = ∇ × w, (31a, b)

where P and Q are mappings from L2(K)3 to L2(K)3. Accordingly, we have p ∈ H1(K) and w∈H1
t0(K)3, where

H1(K) =
{

g
∣∣∣ g ∈ L2(K), ∇g ∈ L2(K)3

}
, (32a)

H1
t0(K)3 =

{
g

∣∣∣ g ∈ H1(K)3, n × g|∂K = 0
}
. (32b)
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The scalar field p is uniquely determined up to a constant, and the vector field w is unique under the supplementary
condition∫

S

∫
w · n dA = 0, (33)

for each regular closed surface S ∈ K. We will assume that the remaining constant of p has been fixed by demanding∫∫
K

∫
p dV = 0. (34)

Owing to the same density properties, the results of Eq. (30) can be generalized to f ∈ L2(K)3. To this end, we
define the operators K and L as

K f = s2

c2
0

∫∫
K

∫
G(r − r ′) f (r ′)dV ′, (35a)

L f =
(

s2

c2
0

− ∇∇·
) ∫

∂K

∫
p(r ′)G(r − r ′)n(r ′)dA′, (35b)

where K : L2(K)3 → H2(K)3 and L : L2(K)3 → C∞(K)3. The operator L is unambiguously defined if p has
been fixed according to Eq. (34), since in that case p is uniquely determined by f . Using these definitions and the
preceding results for the Helmholtz decomposition of Eq. (30), we can write, for Jc ∈ L2(K)3,

Mχ Ei = 1

sε0
(I + MχN) Jc = 1

sε0

(
I + MχP + MχKQ + MχL

)
Jc. (36)

For this combination of operators, the following properties hold.

• I + MχP has a bounded inverse. This will be proven in Sect. 4.4. In view of Theorem 1, we will identify the
operator T with I + MχP and the remaining part MχKQ + MχL will be identified with the compact operator C.

• The Green’s function G in the operator K is square integrable on K and therefore K is a Hilbert–Schmidt operator.
In particular, K is compact from L2(K)3 to L2(K)3 [17]. This implies that the product MχKQ is compact from
L2(K)3 to L2(K)3, since both Mχ and Q are bounded.

This leaves us with the operator product MχL. We observe that the function χ(r) is identically zero for r outside
D, and we introduce an auxiliary operator Mφ ,

Mφ f (r) = φ(r) f (r), (37)

where φ(r) is a C∞
0 (K) function such that

⎧⎪⎪⎨
⎪⎪⎩

φ(r) = 1 for inf
x∈∂K

|x − r| ≥ 2d/3,

0 ≤ φ(r) ≤ 1 for d/3 < inf
x∈∂K

|x − r| < 2d/3,

φ(r) = 0 for inf
x∈∂K

|x − r| ≤ d/3,

(38)

for r ∈ K, and d is the minimum distance between the boundary ∂K and the domain D. We can now write

χ(r) = χ(r)φ(r) + χ(r)(1 − φ(r)) = χ(r)φ(r), (39)

owing to the fact that χ(r) = 0 outside the domain of the dielectric object. Hence,

Mχ = Mχφ + Mχ(1−φ) = Mχφ = MχMφ, (40a)

⇒ MχL = MχMφL. (40b)
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We will prove that MφL is compact. The operator MφL is a bounded mapping from L2(K)3 to C∞
0 (K)3, since

sup
r ′∈∂K, r∈supp(φ)

∣∣∣∂2G(r − r ′)
∣∣∣ < ∞, (41)

where ∂2 denotes any second-order spatial derivative. This follows from the fact that the function G is a C∞
function outside its singularity. The singularity is confined to ∂K, since the integration is restricted to ∂K. Further,
C∞

0 (K)3 is a subspace of H1(K)3. Due to the compact-embedding theorem for Sobolev spaces [18, p. 144], MφL
is a compact operator from L2(K)3 to L2(K)3. Finally, the operator Mχ is bounded, as χ(r) is bounded. Since the
product of a bounded operator and a compact operator is again compact, the operator MχMφL is compact from
L2(K)3 to L2(K)3. We conclude that MχL is a compact operator. It is for this reason that we have extended the
domain D to the strictly larger cube K. Moreover, the cube allows for an elementary Helmholtz decomposition
since it is connected and simply connected.1

We end up with an operator splitting in the form as in Theorem 1, i.e., I + MχN = T + C with

T = I + MχP, C = MχKQ + MχL. (42a, b)

Hence it remains to show that the operator T is bounded and has a bounded inverse, which will be proven in the
next section.

4.4 The operator I + MχP

The boundedness of T is a simple consequence of the boundedness of ε(r, s). To prove the existence and bounded-
ness of the inverse, we decompose the operator T in the form of a 2 × 2 operator matrix. This is possible, since P
and Q are mutually orthogonal projection operators and R (P) ∪ R (Q) = L2(K)3, where R (P) denotes the range
of P.

T =
[

P + PMχP 0
QMχP Q

]
=

[
PMI+χP 0
QMχP Q

]
, (43)

where we have used the fact that I + Mχ = MI+χ and that P is idempotent, since it is a projection operator. Hence,
we can denote the mapping properties of T as

T :
( R (P)

R (Q)

)
→

( R (P)

R (Q)

)
. (44)

Further, P is equal to the identity operator on R (P) and Q is equal to the identity operator on R (Q). Therefore,
straightforward linear algebra shows that we can construct an inverse of the form

T−1 =
[

PAP 0
−QMχPAP Q

]
, (45)

where PAP should be the inverse of PMI+χP on R (P), which is not the same as A = M−1
I+χ . At the same time,

if PAP does not exist, then the inverse of T does not exist. Therefore, a necessary and sufficient condition for the
existence of the inverse of I + MχP is that PAP exists. However, the operator MI+χ is coercive, as can be seen
from the hypotheses on ε in Eq. (16), since I + χ = ε/ε0. Further, the range of P is a Hilbert space with respect to
the L2(K)3 inner product, and the coercivity of PMI+χP on R (P) is a direct consequence of the coerciveness of
MI+χ , i.e., PMI+χP is a bounded coercive linear operator on R (P). The Lax–Milgram theorem [13] guarantees
the existence and boundedness of the inverse of PMI+χP on R (P), which is denoted as PAP.

1 From the point of view of numerical methods, the cube is also a logical choice, since it allows straightforward meshing and the
application of algorithms such as the Fast Fourier Transformation.
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5 Integro–differential equations for E and D

From Sects. 3 and 4.3, it is clear that the integro–differential operators for E and D, as defined in Eqs. (14a) and
(14b), have an inverse which can be constructed from the bounded inverse of the integro–differential operator for
the contrast current density Jc. The main differences between the operators for E and D, and the operator for Jc,
is that the order of the operators Mχ and N is reversed. In that case, the existence and boundedness of the inverses
is a consequence of the following more general algebraic result.

Lemma 1 Let A be a bounded operator from a Hilbert space H1 to a Hilbert space H2 and let B be a bounded
operator from H2 to H1. The inverse of the operator I + AB on H2 exist, if and only if the inverse of I + BA on H1

exists. If the inverse of I+AB exists, then the inverse of I+BA can be constructed as (I+BA)−1 = I−B(I+AB)−1A.

The proof follows by working out the algebra. This lemma can also be used to show that spectrum of the operator
AB is the same as the spectrum of BA, except possibly for the value 0, see e.g. [19, p. 196, Exerc. 8].

The range of Mχ and the domain of N are clearly associated with L2(K)3, as a result of the analysis in Sect. 4.3.
However, the domain of Mχ and the range of N are not yet clear from that discussion. The range of N can be found
via the Helmholtz decomposition on its domain space and then split N as in Sect. 4.3. In that way, we find that the
range of N is contained in

Hloc(curl, R
3) =

{
f
∣∣ f ∈ L2

loc(R
3)3 ∧ ∇ × f ∈ L2

loc(R
3)3

}
, (46)

where the domain is L2(K)3. L2
loc(R

3)3 is the space of three-dimensional vector functions which are locally square
integrable. This aspect of the range of N is consistent with the observation that when N is applied to a contrast
current density Jc ∈ L2(K)3, then the result is an electric field, which satisfies Maxwell’s curl equations. Further,
since Hloc(curl, R

3) is a subspace of L2
loc(R

3)3, MχN maps L2(K)3 into L2(D)3 ⊂ L2(K)3 (cf. Sect. 4.1).
If we choose to employ the domain integro–differential equation (14b) for the generalized electric-flux density,

then we also need to consider proper Hilbert spaces for the domain and range of Mε−1 . Since Mε−1 maps the elec-
tric-flux density to an electric field, the proper space for the range of Mε−1 would again be Hloc(curl, R

3). For the
domain, we recall that the electric-flux density satisfies a divergence equation in Maxwell’s equations. Therefore,
a suitable Hilbert space for the domain of Mε−1 is

Hloc(div, R
3) =

{
f
∣∣ f ∈ L2

loc(R
3)3 ∧ ∇ · f ∈ L2

loc(R
3)

}
. (47)

Hence, if the permittivity operator Mε is an invertible mapping from Hloc(curl, R
3) to Hloc(div, R

3), which is explic-
itly required for the construction of the integro–differential equation, then the analysis reveals that the operator Mε−1

in Eq. (14b) defines a mapping from Hloc(div, R
3) to Hloc(curl, R

3) and it has a bounded inverse.
The use of the Sobolev spaces Hloc(curl, R

3) and Hloc(div, R
3) do not invite us to develop a practical numerical

scheme. Thus we would like to consider Eq. (14a) on a restricted domain rather than the full R
3, on which the

total electric field E is to be approximated, since otherwise we would have to find an approximation on all R
3. We

will not consider the most general restrictions of the domain. Instead we will look at the restriction to a cube K1,
which contains D and which is strictly smaller than the cube K, on which the Helmholtz decomposition in Sect. 4
was performed. We define RK1 as the restriction operator with respect to the cube K1. The operator RK1 has three
important properties. First, on K1 it is equal to the identity operator. Second, RK1 is idempotent, and third,

Mχ = RK1Mχ = MχRK1 . (48)

These properties together with Lemma 1, allow us to construct the inverse of the restricted operator
RK1(I + NMχ )RK1 for the restricted total electric field RK1 E, in terms of the inverse of the operator I + MχN for
the contrast current density on K. The inverse of RK1(I + NMχ )RK1 on K1 is now given by[

RK1(I + NMχ )RK1

]−1 = RK1(I − NUMχ )RK1 , (49)

where U is the inverse of I + MχN restricted to K1, i.e.,

U = RK1(I + MχN)−1RK1 , (50)
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which exists on K1 since K is strictly larger than K1. The proof follows by working out the algebra and by taking
into account the properties of RK1 mentioned above. Hence the domain of the integro–differential equation for the
electric field (Eq. (14a)) can be restricted to the cube K1, without affecting the existence and boundedness of its
inverse. The same argument holds for Eq. (14b). The domain and range of the operator RK1(I + NMχ )RK1 is then
equal to H(curl,K1), which is defined as [15]

H(curl,K1) =
{

f
∣∣ f ∈ L2(K1)

3 ∧ ∇ × f ∈ L2(K1)
3
}

. (51)

For the restricted electric flux density, the proper Hilbert space is [15]

H(div,K1) =
{

f
∣∣ f ∈ L2(K1)

3 ∧ ∇ · f ∈ L2(K1)
}

. (52)

It is also possible to prove the existence and boundedness of the inverse of RK1(I + NMχ )RK1 on K1 directly,
by employing the Helmholtz decomposition on the cube K, as in Sect. 4. Then, we obtain

RK1(I + NMχ )RK1 = RK1 + RK1PMχ + RK1KQMχ + RK1LMχ . (53)

The latter two operator combinations are again compact from H(curl,K1) to H(curl,K1) by the same arguments as
in Sect. 4.3, owing to the fact that K1 is strictly smaller than K. Hence, we observe that the operator RK1(I+PMχ )RK1

should have a bounded inverse on H(curl,K1). This is again established via Lemma 1 and the conditions on the
permittivity function.

6 Numerical consequences

From the preceding analysis it is clear that the domain integro–differential equation for the contrast-current density
has a bounded inverse from L2(K)3 to L2(K)3. In other words, the problem is well-posed from L2(K)3 to L2(K)3.
Similar observations have been made for the domain integro–differential equations for the electric field and for the
generalized electric-flux density, albeit for different functions spaces. For a projection method, this means that, in
principle, we can adopt the Galerkin method with respect to the L2(K)3 inner product and with basis and testing
functions belonging to L2(K)3. Alternatively, one could construct basis and testing functions for the Helmholtz
decomposition. However, the presented analysis is not directly applicable in a practical numerical tool that employs
local basis and testing functions.

The proof of well-posedness given here, based on the splitting of the integro–differential operator, also shows
that the permittivity function plays a role in the dominant part of the integro–differential operator, i.e., T. However,
its contribution is restricted to the laminar part. Hence, large or negative contrasts cause a large difference in scale
between the laminar and the solenoidal parts of the operator T, which has a negative effect on the conditioning of
the entire integro–differential operator and its discretized counterpart. This explains why iterative techniques tend
to stall in their convergence for such cases. Further, it indicates that a suitable preconditioner should be based on
an approximate inverse of the operator T or its discretized counterpart.

At present, numerical schemes based on Eq. (10) [20] and Eq. (11) [1–3,21] are available. In these schemes,
which employ the L2(D)3 inner product, the term ∇∇ · A is tackled by bringing the gradient operator over to the
testing function, which is piecewise linear in the longitudinal direction. As a result, a finite-difference formula is
obtained for the differential operator. For the formulation where the Green’s function has been replaced by a spatially
averaged version of the Green’s function [1–3,20], this approximation is valid, since the weak Green’s function is
continuous everywhere. It has been demonstrated that the weak Green’s function converges to the original Green’s
function when the radius of the sphere, on which the Green’s function is averaged, goes to zero. However, further
research is required to examine whether this also holds for the combination of the integro–differential equation
and the weak Green’s function. For all of the methods mentioned above, it is not clear that the dual space of the
range space of the domain integro–differential operator can be spanned by the proposed testing functions, since the
differentiability of these testing functions is used explicitly. This results in a solution space for the contrast-current
density that is larger than L2(K)3. In turn, this larger space may no longer give rise to a unique solution of the
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domain integro–differential equations. Therefore, we cannot guarantee convergence in norm for these methods.
These existing discretization schemes can be improved by employing less smooth testing functions, e.g. piecewise
constant functions. However, it is not a priori clear that the resulting discretized operator exhibits convergence
in norm, since the dominant operator T is neither the identity operator nor a coercive one. Therefore, standard
arguments for convergence do not apply here and a more detailed study is required. By virtue of [13, Theorem
13.7], such a study should focus on the invertibility and conditioning of the discretized version of T with respect to
mesh refinement. Finally, in [22], a “potential integral equation method” was proposed. The advantage of its for-
mulation is that the second-order spatial derivatives operating on the vector potential (∇∇ · A) have been removed,
at the expense of spatial derivatives operating on the permittivity function. Therefore, this formulation is restricted
to sufficiently smooth profiles. The numerical scheme proposed for this formulation is based on point-matching,
which implies that convergence in an optimal norm cannot be expected.

7 Conclusion

Under general assumptions for the properties of a dielectric object, the domain integro–differential equations for
the contrast current density, for the electric field and generalized electric-flux density both restricted to K1 have a
bounded inverse from L2(K)3 to L2(K)3, from H(curl,K1) to H(curl,K1), and from H(div,K1) to H(curl,K1),
respectively. We have shown that these equations can be reduced to a Fredholm integral equation of the second
kind with a unique solution. We have proven equivalence relations between the inverses of the three operators. The
problems are well-posed for the above mentioned function spaces and the conditions for the well-posedness of the
equations are identical.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
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